
CONCURRENCY

CONTOL

Copyright @ www.bcanotes.com

DEFINITION

 Concurrency means allowing more than one transaction

 to run simultaneously on the same database.

 When several transactions run concurrently database

 consistency can be destroyed.

 To remove this problem Concurrency control is used.

Copyright @ www.bcanotes.com

Need of Concurrency Control (CC)

 The concurrent execution of transactions may lead,
if uncontrolled, to problems such as an inconsistent
database.

 CC techniques are used to ensure that multiple
transactions submitted by various users do not
interfere with one another in a way that produces
incorrect results.

 The effect on a database of any number of
transactions executing in parallel must be the same
as if they were executed one after another.

Copyright @ www.bcanotes.com

Advantages of Concurrent Execution of Transactions

 Improvement Throughput

 Reduced Waiting Time

Copyright @ www.bcanotes.com

Problems of Concurrent Execution of

Transactions

 For Concurrency problems following control

 mechanism is required:

 Lost Update Problem

 The Temporary Update (Uncommitted Dependency) Problem

 The Incorrect Summary (Inconsistent Analysis) Problem

Copyright @ www.bcanotes.com

The Lost Update Problem

In this problem, 2 transactions accessing the

same database item have their operations

interleaved in a way that makes the database

item incorrect.

Copyright @ www.bcanotes.com

Consider the following Example

Lost Update Problem…

Step T1 T2 Result

1 Read (A) A=100

2 A=A-50

3 Read (A) A=100

4 A=A+50

5 Write (A) A=50

6 Read (B) B=200

7 Write (A) A=150

8 B=B+50

9 Write (B) B=250 Copyright @ www.bcanotes.com

The Temporary Update (Uncommitted

Dependency) Problem

This problem occurs when one transaction is

allowed to see the intermediate results of

another transaction before it is committed.

Copyright @ www.bcanotes.com

Consider the Example - The Temporary Update

(Uncommitted Dependency) Problem

Step T1 T2 Result

1 Start Transaction A=200

2 Read (A) A=200

3 A=A-100 A=200

4 Write (A) Start Transaction A=100

5 Read (A) A=100

6 A=A+150 A=100

7 ROLL BACK Write (A) A=250

8 Commit A=250

Since the transaction is Aborted so the database will be
restored to its original state Rs 200. Copyright @ www.bcanotes.com

The Incorrect Summary (Inconsistent

Analysis) Problem

 This problem occurs when a transaction reads

 several values from a database while a second

 transaction updates some of them.

 For e.g. Values of variable A, B, C and Sum

 are in column 3,4,5 and 6. The initial values

 of Sum is 100, 50, 25 and 0 respectively.

Copyright @ www.bcanotes.com

T1 T2 A B C SUM Remarks

R(A,a) R(A,a) Rs.100 Rs.50 Rs.25 0

sum=sum+A A=A-10 Rs.100 Rs.50 Rs.25 100 Value of Sum is changed due
to T1 operation and content
of local variable ‘a’ is
changed to 90

R(B,b) W(A,a) Rs.90 Rs.50 Rs.25 100 Write operation on A is
performed by T2, so A=90

sum=sum+B R(C,c) Rs.90 Rs.50 Rs.25 150 Value of Sum is changed due
to T1 Operation.

c=c+10 Rs.90 Rs.50 Rs.25 150 Content of local variable ‘c’ is
changed to 35

W(C,c) Rs.90 Rs.50 Rs.35 150 WRITE operation on C is
performed by T2 i.e. = 35

R(C,c) Rs.90 Rs.50 Rs.35 150 Value of C is read out as 35
by T1

sum=sum+C Rs.90 Rs.50 Rs.35 185 Value of Sum is changed due
to T1 operation i.e. 185

The Incorrect Summary (Inconsistent Analysis)

Problem

Copyright @ www.bcanotes.com

Concurrency Control Schemes

 Concurrency control schemes are divided

 into 2 categories:

 Pessimistic or Conservative Approach

 Optimistic Approach

Copyright @ www.bcanotes.com

Pessimistic Approach

 This approach says that there must be some

concurrency control techniques deployed before

the transactions are allowed to access the database.

 Methods of Pessimistic approach:

 Locking Protocol

 Time Stamp Based Protocol

Copyright @ www.bcanotes.com

Locking for Concurrency Control
 Locking

 It is a procedure used to control concurrent access to data. In

 this method when one transaction is accessing the database, a

 Lock may deny access to other transactions to produce incorrect

 results.

 Lock

 It is a variable associated with a data item. It describes the

 status of the item with respect to possible operation that

 can be applied to it.

Copyright @ www.bcanotes.com

Types of Lock

 Binary Lock-Two States (Lock and Unlock)

 Share/Exclusive Lock (Read/Write)

Copyright @ www.bcanotes.com

Locking Operations

 Read_lock(A)= Lock-S(A)

 Write_lock(A)=Lock-X(A)

 Unlock(A)

S-Shared Lock

X-Exclusive Lock

Copyright @ www.bcanotes.com

Compatibility of Locks

Shared Lock Exclusive Lock

Shared Lock Yes No

Exclusive Lock No No

Copyright @ www.bcanotes.com

Locking Example
T1 T2

Lock-X (A)

Read (A)

A=A+50

Write (A)

Unlock (A)

Lock-X (A)

Read (A)

A=A-40

Write (A)

Unlock (A)

Lock-X (B)

Read (B)

B=B+100

Write (B)

Unlock (B)
Copyright @ www.bcanotes.com

Problems with Locking

 Dead Lock:

It happens whenever a transaction waits for a lock to be

unlock (to access the data).

 Problem of Starvation

When the data requested by 1 transaction is held by some

other transactions again and again and the requested data

is not given.

Copyright @ www.bcanotes.com

Deadlock Example

T1 T2

Lock-X (B)

Read (B)

B=B+50

Write (B)

Lock-S (A)

Read (A)

Lock-S (B)

Wait..........

Wait..........

Lock-X (A)

Wait..........

Wait..........
Copyright @ www.bcanotes.com

Starvation Example
 T2 holds data item on Shared-mode lock.

 T1 request Exclusive-mode lock on same data item.

 T1 has to wait while T2 release it.

 Meanwhile T3 requests same data item for Shared- mode lock

 and gets it from T2.

 T1 still waiting.

 Now T4 requests same data item for Shared-mode lock and

 gets it from T3.

 T1 still waiting and is said to be Starved.

Copyright @ www.bcanotes.com

Pessimistic Execution

 Validate

 Read

 Compute

 Write

Copyright @ www.bcanotes.com

Two Phase Locking

 Expanding/Growing Phase:

New Locks on items can be acquired but

none can be released.

 Shrinking Phase:

Existing Locks can be released but no

new ones can be acquired.

T1

Lock-X (A)

Read (A)

A=A+50

Write (A)

Lock-X (B)

Read (B)

B=B+50

Write (B)

Unlock (A)

Unlock (B) Copyright @ www.bcanotes.com

Problems in Two-Phase Locking

 Deadlock

 Cascading roll back

Copyright @ www.bcanotes.com

Time-Stamp (TS) based Protocol

In this, a unique fixed timestamp is associated

with each transaction to keep the order of the

transaction. It is denoted by TS (T1).

Copyright @ www.bcanotes.com

Example

If a transaction T1 has been assigned timestamp

TS (T1) and a new transaction TS (T2) enters the

system , then TS (T1) < TS (T2)

Copyright @ www.bcanotes.com

Two methods for implementing TS

 Use the value of the system as the timestamp
(System Clock).

 Use a logical counter that is incremented after

a new timestamp has been assigned.

Copyright @ www.bcanotes.com

Implementation Method

 W-timestamp (Q) denotes the largest TS of any

 transaction that executed write (Q) successfully.

 R-timestamp (Q) denotes the largest TS of any

 transaction that executed read (Q) successfully.

Copyright @ www.bcanotes.com

Optimistic Approach

 It allows transaction to proceed in unsynchronized

 way and only checks/locks conflicts at the end.

 Based on idea that conflicts are rare.

Copyright @ www.bcanotes.com

Validation Based Protocol

 It consist of 3 phases depending upon whether it is

 Read only transaction or Read-Write transaction.

 Phases are:

 Read Phase

 Validation Phase

 Write Phase
Copyright @ www.bcanotes.com

Validation Based Protocol Phases

 Read Phase:

In this every transaction reads the values of all
the data elements it needs from the database
and stores them in Local variables.

All updates are applied to the Local copy of the
data and not to the original database.

Copyright @ www.bcanotes.com

Validation Based Protocol Phases…

 Validation Phase:

 Come after end of Read phase.

 Certain checks are performed to ensure that no conflict
has occurred.

 For Read only transactions this phase consist of checking
that the data elements read are ok, no conflict is there
then it is Committed.

 If conflict is there then transaction is Aborted or
Restarted.

 For Updating transactions, it checks whether current
transaction leaves database in a consistent state, if not
then transaction is Aborted.

Copyright @ www.bcanotes.com

Validation Based Protocol Phases…

 Write Phase:

 This phase is for only Read-Write transaction
not for Read only transaction.

 If the transaction has passed the validation
phase successfully then all the changes made
by the transaction to the Local copy are made
to Final database.

Copyright @ www.bcanotes.com

Optimistic Execution

 Read

 Compute

 Validate

 Write

Copyright @ www.bcanotes.com

