
Copyright @ www.bcanotes.com

N o r m a l i z a t i o n

One of the most important factors in software development is

database definition. If your tables are not set up properly, it

can cause you a lot of headaches down the road when you

extract the data you want. By understanding data

relationships and the normalization of data, you will be better

prepared to begin developing your applications.

 Whether you work with MS-Access, Foxpro, MS-SQL

Server, mySQL or Oracle, you should know the methods of

normalizing the table schema in your relational database

system. They can help make your code easier to understand,

easier to expand upon, and in some cases, actually speed up

your application.

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Basically, the Rules of Normalization are enforced by

eliminating redundancy and inconsistent dependency in your

table designs. Here we will explain what that means by

examining the five progressive steps to normalization you

should be aware of in order to create a functional and efficient

database.

Let's say we want to create a table of user information, and

we want to store each users' Name, Company, Company

Address, and some personal bookmarks, or urls. You might

start by defining a table structure like this:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

users

name

company

company_address

url1

url2

Joe

ABC

1 Work Lane

abc.com

xyz.com

Jill

XYZ

1 Job Street

abc.com

xyz.com

Zero Form

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

We would say this table is in Zero Form because none of our

rules of normalization have been applied yet. Notice the url1

and url2 fields -- what do we do when our application needs to

ask for a third url? Do you want to keep adding columns to

your table and hard-coding that form input field into your

application code? Obviously not, you would want to create a

functional system that could grow with new development

requirements. Let's look at the rules for the First Normal

Form, and then apply them to this table.

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…
First Normal Form

1. Eliminate repeating groups in individual tables.

2. Create a separate table for each set of related data.

3. Identify each set of related data with a primary key.

 Notice how we're breaking that first rule by repeating the url1

and url2 fields? And what about Rule Three, primary keys? Rule

Three basically means we want to put some form of unique,

auto-incrementing integer value into every one of our records.

Otherwise, what would happen if we had two users named Joe

and we wanted to tell them apart? When we apply the rules of

the First Normal Form we come up with the following table:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

users

userId

name

company

company_address

url

1

Joe

ABC

1 Work Lane

abc.com

1

Joe

ABC

1 Work Lane

xyz.com

2

Jill

XYZ

1 Job Street

abc.com

2

Jill

XYZ

1 Job Street

xyz.com

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Now our table is said to be in the First Normal Form. We've solved

the problem of url field limitation, but look at the headache we've

now caused ourselves. Every time we input a new record into

the users table, we've got to duplicate all that company and user

name data. Not only will our database grow much larger than

we'd ever want it to, but we could easily begin corrupting our

data by misspelling some of that redundant information. Let's

apply the rules of Second Normal Form:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Second Normal Form

1. Create separate tables for sets of values that apply to

multiple records.

2. Relate these tables with a foreign key.

 We break the url values into a separate table so we can add

more in the future without having to duplicate data. We'll also

want to use our primary key value to relate these fields:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

users

user

Id

na

me

comp

any

company_a

ddress

1

Joe

ABC

1 Work Lane

2

Jill

XYZ

1 Job Street

urls

urlId

relUserId

url

1

1

abc.com

2

1

xyz.com

3

2

abc.com

4

2

xyz.com

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Ok, we've created separate tables and the primary key in the users

table, userId, is now related to the foreign key in the urls table,

relUserId. We're in much better shape. But what happens when

we want to add another employee of company ABC? Or 200

employees? Now we've got company names and addresses

duplicating themselves all over the place, a situation just rife for

introducing errors into our data. So we'll want to look at

applying the Third Normal Form:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Third Normal Form

Eliminate fields that do not depend on the key.

 Our Company Name and Address have nothing to do with the

User Id, so they should have their own Company Id:

users

userId

name

relCompId

1

Joe

1

2

Jill

2

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

companies

compId

company

company_address

1

ABC

1 Work Lane

2

XYZ

1 Job Street

urls

urlId

relUserId

url

1

1

abc.com

2

1

xyz.com

3

2

abc.com

4

2

xyz.com

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Now we've got the primary key compId in the companies table

related to the foreign key in the users table called relCompId,

and we can add 200 users while still only inserting the name

"ABC" once. Our users and urls tables can grow as large as they

want without unnecessary duplication or corruption of data.

Most developers will say the Third Normal Form is far enough,

and our data schema could easily handle the load of an entire

enterprise, and in most cases they would be correct.

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

But look at our url fields - do you notice the duplication of data? This

is perfectly acceptable if we are not pre-defining these fields. If the

input page which our users are filling out to input this data allows

a free-form text input there's nothing we can do about this, and it's

just a coincidence that Joe and Jill both input the same

bookmarks. But what if it's a drop-down menu which we know only

allows those two urls, or maybe 20 or even more. We can take our

database schema to the next level, the Fourth Form, one which

many developers overlook because it depends on a very specific

type of relationship, the many-to-many relationship, which we

have not yet encountered in our application.

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Data Relationships

Before we define the Fourth Normal Form, let's look at the three basic

data relationships: one-to-one, one-to-many, and many-to-many.

Look at the users table in the First Normal Form example above.

For a moment let's imagine we put the url fields in a separate table,

and every time we input one record into the users table we would

input one row into the urls table. We would then have a one-to-one

relationship: each row in the users table would have exactly one

corresponding row in the urls table. For the purposes of our

application this would neither be useful nor normalized.

Copyright @ www.bcanotes.com

Now look at the tables in the Second Normal Form example. Our tables

allow one user to have many urls associated with his user record.

This is a one-to-many relationship, the most common type, and

until we reached the dilemma presented in the Third Normal Form,

the only kind we needed.

The many-to-many relationship, however, is slightly more complex.

Notice in our Third Normal Form example we have one user related

to many urls. As mentioned, we want to change that structure to

allow many users to be related to many urls, and thus we want a

many-to-many relationship. Let's take a look at what that would do

to our table structure before we discuss it:

N o r m a l i z a t i o n…

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

users

userId

Name

relCompId

1

Joe

1

2

Jill

2

companies

compId

company

company_address

1

ABC

1 Work Lane

2

XYZ

1 Job Street

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

urls

urlId

url

1

abc.com

2

xyz.com

url_relations

relationId

relatedUrlId

relatedUserId

1

1

1

2

1

2

3

2

1

4

2

2

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

In order to decrease the duplication of data (and in the process bring

ourselves to the Fourth Form of Normalization), we've created a

table full of nothing but primary and foriegn keysin url_relations.

We've been able to remove the duplicate entries in the urls table

by creating the url_relations table. We can now accurately express

the relationship that both Joe and Jill are related to each one of ,

and both of, the urls. So let's see exactly what the Fourth Form Of

Normalization entails:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

Fourth Normal Form

1. In a many-to-many relationship, independent entities can not

be stored in the same table.

 Since it only applies to the many-to-many relationship, most

developers can rightfully ignore this rule. But it does come in

handy in certain situations, such as this one. We've successfully

streamlined our urls table to remove duplicate entries and moved

the relationships into their own table.

 Just to give you a practical example, now we can select all of Joe's

urls by performing the following SQL call:

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…

SELECT name, url FROM users, urls, url_relations WHERE

url_relations.relatedUserId = 1 AND users.userId = 1 AND urls.urlId

= url_relations.relatedUrlId

And if we wanted to loop through everybody's User and Url

information, we'd do something like this:

SELECT name, url FROM users, urls, url_relations WHERE

users.userId = url_relations.relatedUserId AND urls.urlId =

url_relations.relatedUrlId

Copyright @ www.bcanotes.com

N o r m a l i z a t i o n…
Fifth Normal Form

 There is one more form of normalization which is sometimes

applied, but it is indeed very esoteric and is in most cases

probably not required to get the most functionality out of your data

structure or application. It's tenet suggests:

1. The original table must be reconstructed from the tables into

which it has been broken down.

 The benefit of applying this rule ensures you have not created any

extraneous columns in your tables, and that all of the table

structures you have created are only as large as they need to be.

It's good practice to apply this rule, but unless you're dealing with

a very large data schema you probably won't need it.

