

 Software Engineering

Software Testing Techniques

Copyright © BCA Notes All Rights Reserved.

Software Testing Techniques

Programmers attempt to built s/w from an abstract
concept to a tangible product.

Engineers creates a series of test cases that are
intended to “demolish” the s/w that has been built.

Testing is one step in s/w process that could be
viewed as destructive rather than constructive

Copyright © BCA Notes All Rights Reserved.

Testing objectives

• Testing is process of executing a program with
the intent of finding an error

• A good test case is one that has a high
probability of finding as an yet undiscovered
error

• A successful test is one that uncovers an as yet
undiscovered error

Copyright © BCA Notes All Rights Reserved.

testability

• Software testability is simply how easily a
computer program can be tested

• Since testing is difficult , it pays to know what can
be done to streamline it

• Sometimes programmers are willing to do things
that will help the testing process and a check list
of possible design point features

• There are certain metrics that could be used to
measure testability in most of aspects ,sometime
testability is used to mean how adequately a
particular set of test will cover the product

Copyright © BCA Notes All Rights Reserved.

Characteristics that lead to testable
software

• Operability: “the better it works , the more
efficiently it can be tested”

– The system has few bugs(bugs adds analysis and
reporting overhead to the test process)

– No bugs block execution of tests

– The product evolves in functional stages(allows
simultaneous development and testing)

Copyright © BCA Notes All Rights Reserved.

• Observability :”what you see is what you test”

– Distinct output is generated for each input

– System states and variables are visible or
queriable during execution

– Past system states and variables are visible or
queriable e.g.(transaction log)

– All factor affecting output are visible

– Incorrect output is easily identified

– Internal errors are automatically detected through
self testing mechanism

– Internal errors are automatically reported

– Source code is accessible

Copyright © BCA Notes All Rights Reserved.

• Controllability : “The better we can control the
software , the more testing can be automated
and optimized”

– All possible output can be generated through
some combination of input

– All code is executable through some combination
of input

– Software and hardware states and variables can
be controlled directly by the test engineer

– Input and output formats are consistent and
structured

– Test can be conveniently specified , automated
and reproduced

 Copyright © BCA Notes All Rights Reserved.

• Decomposability : “ By controlling the scope of
testing , we can more quickly isolate problems
and perform smarter retesting”

– The software system is built from independent
modules

– Software modules can be tested independently

Copyright © BCA Notes All Rights Reserved.

• Simplicity : “The less there is to test more
quickly we can test it”

– Functional simplicity e.g. the feature set is the
minimum necessary to meet requirements

– Structural simplicity e.g. architecture is
modularized to limit the propagation of faults

– Code simplicity e.g. a coding standard is adopted
for ease of inspection and maintenance

Copyright © BCA Notes All Rights Reserved.

• Stability : “the fewer the changes , the fewer
the disruptions to testing”

– Changes to software are infrequent

– Changes to software are controlled

– Changes to software do not invalidate existing
tests

– The software recover well from failures

Copyright © BCA Notes All Rights Reserved.

• Understandability : “The more information we
have , the smarter we will test”

– Design is well understood

– Dependencies between internal , external and
shared components are well understood.

– Changes to design are communicated

– Technical documentation is instantly accessible

– Technical documentation is well organized

– Technical documentation is specified and detailed

– Technical documentation is accurate

Copyright © BCA Notes All Rights Reserved.

Attributes of a “good” test

• A good test has a high probability of finding an error
– The tester must understand the software and how it

might fail
• A good test is not redundant

– Testing time is limited; one test should not serve the
same purpose as another test

• A good test should be “best of breed”
– Tests that have the highest likelihood of uncovering a

whole class of errors should be used
• A good test should be neither too simple nor too

complex
– Each test should be executed separately; combining

a series of tests could cause side effects and mask
certain errors

Copyright © BCA Notes All Rights Reserved.

Test case design

• There is only one rule in designing test case
cover all features but do not make too many
test cases

• The highest likelihood of finding the most
errors with a minimum amount of time and
effort

Copyright © BCA Notes All Rights Reserved.

Two Unit Testing Techniques
• Black-box testing

– Knowing the specified function that a product has been
designed to perform, test to see if that function is fully
operational and error free

– Includes tests that are conducted at the software
interface

– Not concerned with internal logical structure of the
software

• White-box testing
– Knowing the internal workings of a product, test that all

internal operations are performed according to
specifications and all internal components have been
exercised

– Involves tests that concentrate on close examination of
procedural detail

– Logical paths through the software are tested
– Test cases exercise specific sets of conditions and loops

Copyright © BCA Notes All Rights Reserved.

White-box Testing
• Uses the control structure part of component-level

design to derive the test cases
• These test cases

– Guarantee that all independent paths within a
module have been exercised at least once

– Exercise all logical decisions on their true and false
sides

– Execute all loops at their boundaries and within their
operational bounds

– Exercise internal data structures to ensure their
validity

Copyright © BCA Notes All Rights Reserved.

• Logical errors and incorrect assumptions are
inversely proportional to the probability that a
program path will be executed

• We often believe that a logical path is not likely to
be executed when, in fact , it may be executed on a
regular basis

• Typographical errors are random

Copyright © BCA Notes All Rights Reserved.

Basic path testing

• White-box testing technique proposed by Tom
McCabe

• Enables the test case designer to derive a logical
complexity measure of a procedural design

• Uses this measure as a guide for defining a basis
set of execution paths

• Test cases derived to exercise the basis set are
guaranteed to execute every statement in the
program at least one time during testing

Copyright © BCA Notes All Rights Reserved.

