
Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 1/59Chapter 12: Computer LanguagesRef Page

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 2/59Chapter 12: Computer LanguagesRef Page

In this chapter you will learn about:
§ Computer languages or programming languages

§ Three broad categories of programming languages –
machine, assembly, and high-level languages

§ Commonly used programming language tools such as
assembler, compiler, linker, and interpreter

§ Concepts of object-oriented programming languages

§ Some popular programming languages such as
FORTRAN, COBOL, BASIC, Pascal, C, C++, C#, Java,
RPG, LISP and SNOBOL

§ Related concepts such as Subprogram, Characteristics of
a good programming language, and factors to consider
while selecting a language for coding an application

Learning ObjectivesLearning Objectives

208

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 3/59Chapter 12: Computer LanguagesRef Page

Broad Classification of
Computer Languages
Broad Classification of
Computer Languages

§ Machine language

§ Assembly language

§ High-level language

209

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 4/59Chapter 12: Computer LanguagesRef Page

Machine LanguageMachine Language

§ Only language of a computer understood by it
without using a translation program

§ Normally written as strings of binary 1s and 0s

§ Written using decimal digits if the circuitry of
the computer being used permits this

209

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 5/59Chapter 12: Computer LanguagesRef Page

A Typical Machine Language
Instruction Format
A Typical Machine Language
Instruction Format

§ OPCODE tells the computer which operation to perform
from the instruction set of the computer

§ OPERAND tells the address of the data on which the
operation is to be performed

OPCODE
(operation code)

OPERAND
(Address/Location)

210

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 6/59Chapter 12: Computer LanguagesRef Page

A Sample Machine Language ProgramA Sample Machine Language Program

10001471
14002041
30003456
50773456
00000000

001000000000001100111001
001100000000010000100001
011000000000011100101110
101000111111011100101110
000000000000000000000000

In Binary
(Difficult to read and understand)

In Decimal
(Easier to read and understand)

210

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 7/59Chapter 12: Computer LanguagesRef Page

Advantages & Limitations of
Machine Language
Advantages & Limitations of
Machine Language

Advantage

§ Can be executed very fast

Limitations

§ Machine Dependent
§ Difficult to program
§ Error prone
§ Difficult to modify

210

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 8/59Chapter 12: Computer LanguagesRef Page

Assembly/Symbolic LanguageAssembly/Symbolic Language

§ Using alphanumeric mnemonic codes instead of numeric codes for
the instructions in the instruction set
e.g. using ADD instead of 1110 (binary) or 14 (decimal) for
instruction to add

§ Allowing storage locations to be represented in form of alphanumeric
addresses instead of numeric addresses
e.g. representing memory locations 1000, 1001, and 1002 as FRST,
SCND, and ANSR respectively

§ Providing pseudo-instructions that are used for instructing the
system how we want the program to be assembled inside the
computer’s memory
e.g. START PROGRAM AT 0000; SET ASIDE AN ADRESS FOR FRST

Programming language that overcomes the limitations of machine
language programming by:

211

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 9/59Chapter 12: Computer LanguagesRef Page

AssemblerAssembler

§ Software that translates as assembly language
program into an equivalent machine language program
of a computer

One-to-one correspondence
(Source Program) (Object Program)

Assembler

Assembly
language
program

Machine
language
program

Input Output

212

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 10/59Chapter 12: Computer LanguagesRef Page

A subset of the set of instructions supported by a computer

Halt, used at the end of program to stop
Clear and add into A register
Add to the contents of A register
Subtract from the contents of A register
Store A register

00
10
14
15
30

HLT
CLA
ADD
SUB
STA

Meaning OpcodeMnemonic

An Example of Assembly
Language Program
An Example of Assembly
Language Program

213

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 11/59Chapter 12: Computer LanguagesRef Page

START PROGRAM AT 0000
START DATA AT 1000
SET ASIDE AN ADDRESS FOR FRST
SET ASIDE AN ADDRESS FOR SCND
SET ASIDE AN ADDRESS FOR ANSR
CLA FRST
ADD SCND
STA ANSR
HLT

Sample assembly language program for adding two numbers and
storing the result

An Example of Assembly
Language Program
An Example of Assembly
Language Program

213

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 12/59Chapter 12: Computer LanguagesRef Page

1000
1001
1002

FRST
SCND
ANSR

Memory locationSymbolic name

Mapping table set up by the assembler for the data items
of the assembly language program

An Example of Assembly
Language Program
An Example of Assembly
Language Program

213

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 13/59Chapter 12: Computer LanguagesRef Page

An Example of Assembly
Language Program
An Example of Assembly
Language Program

Equivalent machine language program for the assembly language program

Address Opcode

1000
1001

1002

Clear and add the number stored at FRST to A register
Add the number stored at SCND to the contents of A
register
Store the contents of A register into ANSR
Halt

Reserved for FRST
Reserved for SCND
Reserved for ANSR

10
14

30
00

0000
0001

0002
0003

-
-
-

1000
1001
1002

Comments Contents Memory
location

214

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 14/59Chapter 12: Computer LanguagesRef Page

Advantages of Assembly Language
Over Machine Language
Advantages of Assembly Language
Over Machine Language

§ Easier to understand and use

§ Easier to locate and correct errors

§ Easier to modify

§ No worry about addresses

§ Easily relocatable

§ Efficiency of machine language

214

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 15/59Chapter 12: Computer LanguagesRef Page

Limitations of Assembly LanguageLimitations of Assembly Language

§ Machine dependent

§ Knowledge of hardware required

§ Machine level coding

215

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 16/59Chapter 12: Computer LanguagesRef Page

§ Mainly used today to fine-tune important parts of
programs written in a high-level language to improve
the program’s execution efficiency

Typical Uses of Assembly LanguageTypical Uses of Assembly Language

215

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 17/59Chapter 12: Computer LanguagesRef Page

Assembly Languages with
Macro Instructions
Assembly Languages with
Macro Instructions

§ Any assembly language instruction that gets translated
into several machine language instructions is called a
macro instruction

§ Several assembly languages support such macro
instructions to speed up the coding process

§ Assemblers of such assembly languages are designed to
produce multiple machine language instructions for each
macro instruction of the assembly language

215

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 18/59Chapter 12: Computer LanguagesRef Page

High-Level LanguagesHigh-Level Languages

§ Machine independent

§ Do not require programmers to know anything about the
internal structure of computer on which high-level
language programs will be executed

§ Deal with high-level coding, enabling the programmers
to write instructions using English words and familiar
mathematical symbols and expressions

216

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 19/59Chapter 12: Computer LanguagesRef Page

§ Translator program (software) that translates a high-
level language program into its equivalent machine
language program

§ Compiles a set of machine language instructions for
every program instruction in a high-level language

CompilerCompiler

217

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 20/59Chapter 12: Computer LanguagesRef Page

One-to-many correspondence
(Source
Program)

(Object
Program)

Compiler
High-level
language
program

Machine
language
program

Input Output

CompilerCompiler

217

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 21/59Chapter 12: Computer LanguagesRef Page

Illustrating the requirement of a separate compiler for each
high-level language supported by a computer

A computer supporting languages L1 and L2

Program P1 in
high-level
language L1

Program P2 in
high-level
language L2

Machine code
for P1

Machine code
for P2

Compiler for
language L1

Compiler for
language L2

CompilerCompiler

(Continued on next slide)

218

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 22/59Chapter 12: Computer LanguagesRef Page

Illustrating the machine independence characteristic of a
high-level language. Separate compilers are required for the
same language on different computers

Compiler for
language L1
on computer A

Program P1 in high-
level language L1

Machine code for
P1 that will run
on computer A

Executed on
computer A

Compiler for
language L1
on computer B

Machine code for
P1 that will run on
computer B

Executed on
computer B

Same results
obtained

CompilerCompiler
(Continued from previous slide..)

218

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 23/59Chapter 12: Computer LanguagesRef Page

Syntax ErrorsSyntax Errors

In addition to doing translation job, compilers also
automatically detect and indicate syntax errors

Syntax errors are typically of following types:

Note : A compiler cannot detect logic errors in a program

§ Illegal characters

§ Illegal combination of characters

§ Improper sequencing of instructions in a program

§ Use of undefined variable names

219

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 24/59Chapter 12: Computer LanguagesRef Page

START

Edit
source program

Syntax
errors

detected?

Yes

Compile
source program

Source program

Generate list of coded
error messages

Generate
object program

Object program

STOP

No

The Process of Removing Syntax Errors
From A Source Program
The Process of Removing Syntax Errors
From A Source Program

219

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 25/59Chapter 12: Computer LanguagesRef Page

§ For a large software, storing all the lines of program
code in a single source file will be:

§ Hence, a modular approach is generally adapted to
develop large software where the software consists of
multiple source program files

§ No need to write programs for some modules as it might
be available in library offering the same functionality

– Difficult to work with
– Difficult to deploy multiple programmers to

concurrently work towards its development
– Any change in the source program would require the

entire source program to be recompiled

LinkerLinker

(Continued on next slide)

219

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 26/59Chapter 12: Computer LanguagesRef Page

LinkerLinker

§ Each source program file can be independently
modified and compiled to create a corresponding
object program file

§ Linker program (software) is used to properly
combine all the object program files (modules)

§ Creates the final executable program (load module)

(Continued from previous slide..)

220

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 27/59Chapter 12: Computer LanguagesRef Page

§ Interpreter is a high-level language translator

§ Takes one statement of a high-level language
program, translates it into machine language
instructions

§ Immediately executes the resulting machine language
instructions

§ Compiler simply translates the entire source program
into an object program and is not involved in its
execution

InterpreterInterpreter

220

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 28/59Chapter 12: Computer LanguagesRef Page

Interpreter
(translates and

executes
statement-by-

statement)

High-level language
program

(Source Program)
Result of
program
execution

Input Output

Role of an InterpreterRole of an Interpreter

220

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 29/59Chapter 12: Computer LanguagesRef Page

Intermediate Language Compiler &
Interpreter
Intermediate Language Compiler &
Interpreter

§ New type of compiler and interpreter combines the
speed, ease, and control of both compiler and
interpreter

§ Compiler first compiles the source program to an
intermediate object program

§ Intermediate object program is not a machine
language code but written in an intermediate
language that is virtually machine independent

§ Interpreter takes intermediate object program,
converts it into machine language program and
executes it

221

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 30/59Chapter 12: Computer LanguagesRef Page

Benefits of Intermediate Language
Compiler & Interpreter
Benefits of Intermediate Language
Compiler & Interpreter

§ Intermediate object program is in compiled form and thus is
not original source code, so safer and easier to share

§ Intermediate object program is based on a standard
Intermediate Definition Language (IDL)

§ Interpreter can be written for any computer architecture and
operating system providing virtual machine environment to the
executing program

§ Newer Interpreter compiles intermediate program, in memory,
into final host machine language program and executes it

§ This technique is called Just-In-Time (JIT) Compilation

221

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 31/59Chapter 12: Computer LanguagesRef Page

Advantages of High-Level LanguagesAdvantages of High-Level Languages

§ Machine independent

§ Easier to learn and use

§ Fewer errors during program development

§ Lower program preparation cost

§ Better documentation

§ Easier to maintain

222

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 32/59Chapter 12: Computer LanguagesRef Page

Limitations of High-Level LanguagesLimitations of High-Level Languages

§ Lower execution efficiency

§ Less flexibility to control the computer’s CPU, memory
and registers

222

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 33/59Chapter 12: Computer LanguagesRef Page

Object-Oriented Programming LanguagesObject-Oriented Programming Languages

§ Programming languages are used for simulating real-
world problems on computers

§ Much of the real world is made up of objects

§ Essence of OOP is to solve a problem by:

§ Identifying the real-world objects of the problem

§ Identifying processing required of them

§ Creating simulations of objects, processes, and their
communications

223

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 34/59Chapter 12: Computer LanguagesRef Page

§ Stands for FORmula TRANslation

§ Originally developed by John Backus and his team at
IBM followed by several revisions

§ Standardized by ANSI as FORTRAN-77 and FORTRAN-90

§ Designed for solving scientific & engineering problems

§ Oriented towards solving problems of a mathematical
nature

§ Popular language amongst scientists and engineers

FORTRANFORTRAN

223

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 35/59Chapter 12: Computer LanguagesRef Page

C FORTRAN PROGRAM TO COMPUTE
C THE SUM OF 10 NUMBERS

SUM = 0
DO 50 I = 1, 10
READ (5, 10) N
SUM = SUM + N

50 CONTINUE
WRITE (6, 20) SUM

10 FORMAT (F6.2)
20 FORMAT (1X, ’THE SUM OF GIVEN NUMBERS = ’,

F10.2)
STOP
END

A Sample FORTRAN ProgramA Sample FORTRAN Program

224

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 36/59Chapter 12: Computer LanguagesRef Page

§ Stands for COmmon Business Oriented Language

§ Originally developed started under Grace Hopper
followed by COnference on DAta SYstems Languages
(CODASYL)

§ Standardized by ANSI as COBOL-74, COBOL-85, and
COBOL-2002

§ Designed for programming business data processing
applications

§ Designed to have the appearance and structure of a
business report written in English, hence often referred
to as a self-documenting language

COBOLCOBOL

224

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 37/59Chapter 12: Computer LanguagesRef Page

IDENTIFICATION DIVISION.
PROGRAM_ID. SUMUP.
AUTHOR. P K SINHA.
* THIS PROGRAM COMPUTES AND PRINTS
* THE SUM OF GIVEN NUMBERS.

ENVIROMENT DIVISION.
CONFIGURATION SECTION.
SOURCE_COMPUTER. BURROUGHS_6700.
OBJECT_COMPUTER. BURROUGHS_6700.
INPUT_OUTPUT SECTION.
FILE_CONTROL.

SELECT DATA_FILE ASSIGN TO DISK.
SELECT OUTPUT_FILE ASSIGN TO PRINTER.

DATA DIVISION.
FILE SECTION.

A Sample COBOL ProgramA Sample COBOL Program

(Continued on next slide)

226

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 38/59Chapter 12: Computer LanguagesRef Page

FD DATA_FILE
RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD IS INPUT_DATA_

RECORD.

01 INPUT_DATA_RECORD.
05 NPICTURE 9(6)V99.
05 FILLER PICTURE X(72).

FD OUTPUT_FILE
RECORD CONTAINS 132 CHARACTERS
LABEL RECORD IS OMITTED

DATA RECORD IS OUTPUT_RECORD.

A Sample COBOL ProgramA Sample COBOL Program
(Continued from previous slide..)

(Continued on next slide)

226

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 39/59Chapter 12: Computer LanguagesRef Page

01 OUTPUT_RECORD.
05 FILLER PICTURE X.
05TITLE PICTURE X(25).
05 SUM PICTURE 9(10)V99.

05 FILLER PICTURE X(94).
WORKING_STORAGE SECTION.
77MESSAGE PICTURE X(25)
VALUE IS “THE SUM OF GIVEN NUMBERS=”.

PROCEDURE DIVISION.
OPEN_FILES.

OPEN INPUT DATA_FILE.
OPEN OUTPUT OUTPUT_FILE.

INITIALIZATION.
MOVE SPACES TO OUTPUT_RECORD.
MOVE ZERO TO SUM.

A Sample COBOL ProgramA Sample COBOL Program
(Continued from previous slide..)

(Continued on next slide)

226

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 40/59Chapter 12: Computer LanguagesRef Page

PROCESS_LOOP.
READ DATA_FILE AT END GO TO

PRINT_PARA.
ADD N TO SUM.
GO TO PROCESS_LOOP.

PRINT_PARA.
MOVE MESSAGE TO TITLE.
WRITE OUTPUT_RECORD.

END_OF_JOB.
CLOSE DATA_FILE.
CLOSE OUTPUT_FILE.
STOP RUN.

A Sample COBOL ProgramA Sample COBOL Program
(Continued from previous slide..)

226

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 41/59Chapter 12: Computer LanguagesRef Page

§ Stands for Beginners All-purpose Symbolic Instruction
Code

§ Developed by Professor John Kemeny and Thomas Kurtz
at Darmouth College in the United States

§ Standardized by ANSI as BASIC-78

§ Designed to be an interactive language and to use an
interpreter instead of a compiler

§ Simple to implement, learn and use language. Hence, it
is a widely used language on personal computers

§ Flexible and reasonably powerful language and can be
used for both business and scientific applications

BASICBASIC

227

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 42/59Chapter 12: Computer LanguagesRef Page

5 REM PROGRAM TO COMPUTE
6 REM THE SUM OF 10 NUMBERS
10 LET S = 0
20 FOR I = 1 TO 10
30 READ N
40 LET S = S + N
50 NEXT I
60 PRINT “THE SUM OF GIVEN NUMBERS = ”; S
70 DATA 4, 20, 15, 32, 48
80 DATA 12, 3, 9, 14, 44
90 END;

A Sample BASIC ProgramA Sample BASIC Program

227

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 43/59Chapter 12: Computer LanguagesRef Page

§ Named after the famous seventeenth-century French
mathematician Blaise Pascal

§ Developed by Professor Nicklaus Wirth of Federal Institute of
Technology in Zurich

§ Encourages programmers to write well-structured, modular
programs, instills good program practices

§ Recognized as an educational language and is used to teach
programming to beginners

§ Suitable for both scientific & business applications

§ Has features to manipulate numbers, vectors, matrices,
strings, sets, records, files, and lists

PascalPascal

228

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 44/59Chapter 12: Computer LanguagesRef Page

PROGRAM SUMNUMS (INPUT, OUTPUT);
(* PROGRAM TO COMPUTE THE SUM OF 10 NUMBERS *)

(* DECLARATION OF VARIABLES *)
VAR SUM, N : REAL;
VAR I : INTEGER;

(* MAIN PROGRAM LOGIC STARTS HERE *)
BEGIN

SUM := 0;
FOR I := 1 TO 10 DO
BEGIN

READ (N);
SUM := SUM + N;

END;
WRITELN (‘THE SUM OF GIVEN NUMBERS=’, SUM);

END;

A Sample Pascal ProgramA Sample Pascal Program

228

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 45/59Chapter 12: Computer LanguagesRef Page

CC

§ Developed in 1972 at AT&T’s Bell laboratories, USA
by Dennis Ritchie and Brian Kernighan

§ Standardized by ANSI and ISO as C89, C90, C99

§ High-level programming languages (mainly machine
independence) with the efficiency of an assembly
language

§ Language of choice of programmers for portable
systems software and commercial software packages
like OS, compiler, spreadsheet, word processor, and
database management systems

229

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 46/59Chapter 12: Computer LanguagesRef Page

/* PROGRAM TO COMPUTE THE SUM OF 10 NUMBERS */
/* Directives to include standard library and header */
#include <stdlib.h>
#include <stdio.h>
/* Main function starts here */
void main ()
{

/* Declaration of variables */
float Sum = 0.0, N = 0.0;
int Count = 0;
for (Count = 0; Count < 10; Count++)

{
printf(“\nGive a number:”);
scanf(“%f”, N);
Sum += N;

}
printf(“THE SUM OF GIVEN NUMBERS = %f”, &Sum);

}

A Sample C ProgramA Sample C Program

230

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 47/59Chapter 12: Computer LanguagesRef Page

C++C++

§ Named C++ as ++ is increment operator and C
language is incremented to its next level with C++

§ Developed by Bjarne Stroustrup at Bell Labs in the
early 1980s

§ Contains all elements of the basic C language

§ Expanded to include numerous object-oriented
programming features

§ Provides a collection of predefined classes, along with
the capability of user-defined classes

229

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 48/59Chapter 12: Computer LanguagesRef Page

JavaJava

§ Development started at Sun Microsystems in 1991 by a
team led by James Gosling

§ Developed to be similar to C++ with fewer features to
keep it simple and easy to use

§ Compiled code is machine-independent and developed
programs are simple to implement and use

§ Uses just-in-time compilation

§ Used in embedded systems such as hand-held devices,
telephones and VCRs

§ Comes in two variants – Java Runtime Engine (JRE) and
Java Software Development Kit (SDK)

231

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 49/59Chapter 12: Computer LanguagesRef Page

C# (C Sharp)C# (C Sharp)

§ Object-oriented programming language developed by
Anders Hejlsberg and released by Microsoft as part of
Microsoft’s .NET technology initiative

§ Standardized by ECMA and ISO

§ Syntactically and semantically very close to C++ and
adopts various object-oriented features from both C++
and Java

§ Compilers target the Common Language Infrastructure
(CLI) implemented by Common Language Runtime (CLR)
of .NET Framework

§ CLR provides important services such as, memory
management, exception handling, and security

232

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 50/59Chapter 12: Computer LanguagesRef Page

RPGRPG

§ Stands for Report Program Generator

§ Developed by IBM to meet customer requests for an
easy and economic mechanism for producing reports

§ Designed to generate the output reports resulting from
the processing of common business applications

§ Easier to learn and use as compared to COBOL

§ Programmers use very detailed coding sheets to write
specifications about input, calculations, and output

232

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 51/59Chapter 12: Computer LanguagesRef Page

LISPLISP

§ Stands for LISt Processing

§ Developed in 1959 by John McCarthy of MIT

§ Designed to have features for manipulating non-
numeric data, such as symbols and strings of text

§ Due to its powerful list processing capability, it is
extensively used in the areas of pattern recognition,
artificial intelligence, and for simulation of games

§ Functional programming language in which all
computation is accomplished by applying functions to
arguments

232

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 52/59Chapter 12: Computer LanguagesRef Page

SNOBOLSNOBOL

§ Stands for StriNg Oriented symBOlic Language

§ Used for non-numeric applications

§ Powerful string manipulation features

§ Widely used for applications in the area of text
processing

233

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 53/59Chapter 12: Computer LanguagesRef Page

Characteristics of a Good
Programming Language
Characteristics of a Good
Programming Language

§ Simplicity

§ Naturalness

§ Abstraction

§ Efficiency

§ Structured Programming Support

§ Compactness

§ Locality

§ Extensibility

§ Suitability to its environment

233

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 54/59Chapter 12: Computer LanguagesRef Page

Factors for Selecting a Language for
Coding an Application
Factors for Selecting a Language for
Coding an Application

§ Nature of the application

§ Familiarity with the language

§ Ease of learning the language

§ Availability of program development tools

§ Execution efficiency

§ Features of a good programming language

234

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 55/59Chapter 12: Computer LanguagesRef Page

SubprogramSubprogram

§ Program written in a manner that it can be brought into
use in other programs and used whenever needed
without rewriting

§ Also referred to as subroutine, sub-procedure, or function

§ Subprogram call statement contains the name of the
subprogram followed by a list of parameters enclosed
within a pair of parentheses

§ Intrinsic subprograms (also called built-in-functions) are
those provided with the programming language

§ Programmer-written subprograms are written and used
as and when they are needed

235

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 56/59Chapter 12: Computer LanguagesRef Page

sqrt (x)

Set of instructions that perform
the intended task

Subprogram name Parameter

Subprogram header

Subprogram body

Structure of a SubprogramStructure of a Subprogram

235

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 57/59Chapter 12: Computer LanguagesRef Page

A program that calls
the subprogram twice

subprogram header

subprogram body

subprogram call statement

next statement

subprogram call statement

next statement

A subprogram Flow of control

1

3

7

2

6 4

5

8

9

Flow of Control in Case of Subprogram CallsFlow of Control in Case of Subprogram Calls

236

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 58/59Chapter 12: Computer LanguagesRef Page

Key Words/PhrasesKey Words/Phrases

§ Assembler
§ Assembly language
§ BASIC
§ Built-in function
§ C
§ C++
§ C#
§ COBOL
§ Coding
§ Compiler
§ Computer language
§ FORTRAN
§ Function
§ High-level language
§ HotJava Interpreter
§ Intrinsic subprogram
§ Intermediate compiler and

Interpreter
§ Java

§ Just-in-time compilation
§ Language processor
§ Linker
§ LISP
§ Load module
§ Logic error
§ Low-level language
§ Machine language
§ Macro instructions
§ Object program
§ Object-oriented programming
§ Opcode
§ Operand
§ Pascal
§ Programmer
§ Programming
§ Programming language
§ Pseudo instruction
§ RPG
§ Self-documenting language

(Continued on next slide)

236

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 59/59Chapter 12: Computer LanguagesRef Page

§ SNOBOL
§ Source program
§ Sub-procedure
§ Subprogram
§ Subroutine
§ Symbolic language
§ Syntax error
§ Syntax rules
§ Written subprograms

Key Words/PhrasesKey Words/Phrases
(Continued from previous slide..)

236

